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1 Introduction

This Technical Report provides some details about 1) the algorithms discussed in [1] and 2) some

numerical results not included in [1] for space limitations and regarding the performance provided

by various localization algorithms.

2 Covering Generation Algorithm

All the map-aware algorithms discussed in [1] employ a rectangular covering as definition of the

integration/search domain (see [1, Table I]). In this Section a simple, but effective, algorithm to

generate rectangular coverings is illustrated.

As mentioned in [1], there is no one-to-one mapping between the support R of a (rectangular)

map and its covering {Rk}; however, various algorithms are already available in the technical

literature to partition a generic polygon into a set of rectangles (e.g., see [2,3]) and, in particular,

to generate a partition consisting of a minimal number of rectangles, i.e., to generate the so-

called minimal non-overlapping covering (MNC) [4–6]. In typical localization systems the MNC

can be computed offline, since R is usually time invariant. Moreover, building plans are usually

characterized by rectangular features (walls, rooms, corridors, etc). For these reasons, instead of

employing one of the optimized (but computationally intensive) algorithms proposed in [4–6], a

simpler algorithm, summarized in Alg. 1, has been adopted in [1]. Note that this algorithm can

handle maps containing “holes” (i.e., regions that are enclosed by the domain R but do not belong

to it) and that the input data it requires can be easily extracted from the maps of typical building

floors. It is based on the assumption that both the map and its “holes” can be approximated by

the union of multiple rectangles, all having parallel sides.

Note that, in particular, Alg. 1 is fed by the list {(xn, yn)}Nv

n=1 of the Nv vertices describing

the map support R (and by an optional lists of vertices describing the “holes”). An example of

map support R and of the notation that can be used to describe it is shown in Fig. 1. Alg. 1

operates by first creating the so called dense non-overlapping covering (DNC) (lines 1-15) and

then, through iterative merge operations, by transforming it into the MNC (lines 16-27). Thanks

to the assumption that all sides of R and its holes are parallel, the check accomplished at line 7 is

simple (in fact, to understand ifRi,j ⊂ R, a simple check on the rectangle center can be employed).
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Algorithm 1 Simplified MNC and DNC generation for rectangular maps from the vertex list (used by
map-aware estimators)

Require: vertex list {(xn, yn)}Nv

n=1 of the polygons modelling the outer edges of R

Require: vertex lists
{
p

(m)
n ∈ R2

}N
(m)
h

n=1
, with m = 1, . . . ,Mh, of the polygons modelling the Mh

“holes” of R (where N
(m)
h denotes the number of vertices of the m-th “hole”).

Ensure: {RDNC
k } and {RMNC

k } contain a DNC and the approximated MNC for R, respectively.
1: xg ← sorted {xn} values
2: yg ← sorted {yn} values
3: . xg and yg define a non-uniformly spaced grid on R
4: k ← 1
5: for i ∈ {1, ..., |xg| − 1}, j ∈ {1, ..., |yg| − 1} do
6: Ri,j ← [xg,i;xg,i+1]× [yg,j;yg,j+1]
7: if centre{Ri,j} ∈ polygons defined by {(xn, yn)}n and

8: centre{Ri,j} /∈ polygons defined by
{
p

(m)
n

}N
(m)
h

n=1
, with m = 1, . . . ,Mh then

9: RDNC
k ← Ri,j

10: RMNC
k ← Ri,j

11: . Ri,j is a rectangle which needs to be included in the DNC and the MNC
12: k ← k + 1
13: . k counts the rectangles placed until now in the DNC and MNC
14: end if
15: end for
16: . DNC is ready; now it is optimized to produce the MNC
17: k ← 1
18: while k < | {RMNC

k } | do
19: I ← a value of the set {i 6= k | RMNC

i

⋃
RMNC

k is a rectangle}
20: if I ≡ ∅ then
21: k ← k + 1
22: else
23: . I contains the index of a rectangle that can be merged with RMNC

k

24: RMNC
k ← RMNC

k

⋃(⋃
i∈IRMNC

i

)
25: . the size of the MNC can be reduced, thanks to the merge operation
26: remove {RMNC

i , i ∈ I} from the set {RMNC
k }

27: end if
28: end while
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Figure 1: The support R of a map identified by Nv = 18 vertices suitable for processing with Alg.
1. Two “holes” are present in the support R and can be described by two polygons composed by
N

(1)
h = 6 and N

(2)
h = 8 vertices, respectively.

Once the DNC is obtained, the MNC (which is identical to the DNC until line 18) is produced by

searching, for each rectangle, all the neighbours that, once merged with the considered rectangle,

will generate another rectangle (since, generally speaking, merging two rectangles does not produce

another rectangle).

The MNC and DNC coverings generated for the same building map are thus related to the

map support R as

R '
NMNC

r⋃
k=1

RMNC

k =

NDNC
r⋃
k=1

RDNC

k (1)

where NMNC
r (NDNC

r ) is the number of rectangles in the selected MNC (DNC) of R.

For some examples of building maps and associated values obtained for NMNC
r (NDNC

r ) the reader

is referred to the numerical results section of [1].

4



3 The Map-Aware MMSE Cubature Implementation

In this section some details about the implementation of the minimum mean square error (MMSE)

estimator based on cubature integration formulas and mentioned in [1] are provided. As shown in

in [1], the MMSE estimator for the considered map-aware localization problem can be expressed

as [1, Eq. (11)]

p̂MMSE(z) '

[ ˜
R(Z) xh(z,p)dp˜
R(Z) y h(z,p)dp

]
˜
R(Z) h(z,p)dp

(2)

where

h(z,p) , exp [q(p, z)] . (3)

q(p, z) , −1

2

∑
i∈Z

(
zi − di(p)− µb,i(p)

σn,i(p)

)2

(4)

The integrations required by the MMSE estimator can be approximated using the so called cubature

formulas [7–11]. In particular, a cubature formula allows to approximate the integral of the function

g : RN → R over a domain Ω ⊂ RN as

ˆ
. . .

ˆ
Ω

g(α)dα =
Nn∑
j=1

wjg
(
α(j)

)
+R(g) (5)

where α(j) ∈ RN and wj are the j-th node and the j-th weight, respectively, Nn is the order of the

cubature formula (i.e., the number of its nodes) and R(g) is the remainder [8]. If g(·) is a polynomial

function of degree d, cubature formulas having a minimal number of nodes Nn(d) and ensuring

that R(g) = 0 are available for different types of multidimensional domains Ω (e.g., see [7–11]);

these formulas have been successfully employed in multidimensional filtering applications (e.g.,

see [12, 13]). However, if g(·) is not a polynomial function, known cubature formulas always lead

to approximate results. In our work the results illustrated in [9], which provides “almost minimal”

cubature formulas for polynomial functions of degree belonging to the interval 1-55 and for Ω =

[−1; 1] × [−1; 1], have been exploited. Such formulas can be easily adapted to multidimensional

integration over the domain R(Z) since, thanks to (1), any integral over R(Z) can be expressed as

the sum of Nr distinct integrals over rectangular domains. In fact, if Rk , [lk; rk]× [bk; tk] denotes
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the k-th rectangle of the selected covering, it can be easily shown that

¨
Rk

g(p)dp = (detLk)

¨
Ω

g(ck + Lkα)dα (6)

where α , L−1
k (p− ck), Lk , 1

2
diag {rk − lk, tk − bk} and ck , 1

2
[lk + rk; bk + tk]T . Then, substi-

tuting (5) in the RHS of (6) yields the approximate integration formula

¨
Rk

g(p)dp ' (detLk)

Nn,k∑
j=1

wjg
(
ck + Lkα

(j)
)

(7)

Here, to ensure a proper accuracy in numerical integration, the number of nodes is heuristically

selected as Nn,k = Nn (bmARk
+ dminc), where Nn(·) is the function mapping the degree d of a

polynomial into the number of integration nodes provided in [9], bmARk
+ dminc is the “pseudo”

polynomial degree associated with g(·), m and dmin are constants (their values are listed in Table [1,

Table 1]) and ARk
is the area of Rk. Note that the criterion proposed for the selection of Nn,k

ensures that high cubature orders are selected for large rectangles, so that the integration accuracy

is enhanced in portions of the map where the integrand function may exhibit strong fluctuations

(at the price, however, of an increased computational load). The cubature formula (7) can be

exploited to evaluate the three integrals appearing in the RHS of (2). This leads to

p̂MMSEc(z) '


Nr∑
k=1

Nn,k∑
j=1

wk,jα
(k,j)
x h

(
z,α(k,j)

)
Nr∑
k=1

Nn,k∑
j=1

wk,jα
(k,j)
y h

(
z,α(k,j)

)


Nr∑
k=1

Nn,k∑
j=1

wk,jh (z,α(k,j))

(8)

where α(k,j) , ck + Lkα
(j) = [α

(k,j)
x , α

(k,j)
y ]T is the j-th node associated with Rk (see (1)) and

wk,j , wj · detLk is the corresponding weight.

Note that:
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• all the sums appearing in the RHS of (8) require the evaluation of the same quantities1{
h
(
z,α(k,j)

)}
;

• MMSEc requires the evaluation of (8) only and is non-iterative;

• its approximate complexity is O
(
N̄s ·Nobs ·Neval

)
with Neval = N̄n · Nr, where N̄n is the

average number of nodes selected for integration inside each of the Nr rectangles.

In a practical implementation of (8) a final important issue needs to be considered; in fact, the

quantities
{
h
(
z,α(k,j)

)}
involve exponential operations (see (3)), so that their “dynamic range”

can be very large (i.e., these quantities may assume very small values in some cases and very

large values in other cases); this may lead to underflow and overflow problems depending on the

hardware used to carry out these computations (in particular, the relevance of such problems

depends on the number of bits used for floating point operations (FLOPs) ). In our experience, a

simple method to mitigate such a problem consists in

1. estimating the average C , Ep,z {q(p, z)}, where q(p, z) (4) is the argument of the exponen-

tial operator of h(p, z) (3);

2. exploiting the simple analytical result

p̂MMSE(z) '

[ ˜
R(Z) xh(z,p)dp˜
R(Z) y h(z,p)dp

]
˜
R(Z) h(z,p)dp

=

[ ˜
R(Z) x exp [q(z,p)] dp˜
R(Z) y exp [q(z,p)] dp

]
˜
R(Z) exp [q(z,p)] dp

=

[ ˜
R(Z) x exp [q(z,p)− C] dp˜
R(Z) y exp [q(z,p)− C] dp

]
˜
R(Z) exp [q(z,p)− C] dp

(9)

Indeed the evaluation of the terms exp [q(z,p)− C] of (9) requires a much smaller number of bits

in FLOPs with respect to the evaluation of exp [q(z,p)], when C assumes large values.

1Reusing the quantities
{
h
(
z,α(k,j)

)}
in the 3 integrals appearing in (8) reduces the overall computational

complexity of MMSE estimation, since the evaluation of h(·, ·) involves complicated computations (see (3)).
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Figure 2: FLOP count F̄ for various estimation algorithms versus dmax. Map #4 is considered.

4 Additional Numerical Results

In this Section some numerical results related to the algorithms described in [1] are reported (they

could not be included in [1] because of space limitations).

4.1 Impact of the Coverage Region Radius on Complexity

In the localization system described in [1] the radius dmax of the anchor coverage region (see [1, Sec.

2]) plays a fundamental role in determining both system costs2 and the accuracy and complexity

of most estimation algorithms; this is due to the fact that dmax determines the size of the domains

R(Z) and P(Z). Fig. 2 allows us to assess the influence of dmax on the FLOP count for some

2Long-range anchors allow to perform accurate localization even if their spatial density is low and are thus useful
to reduce system deployment costs.
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implementations (in this case d̃max = 0.9dmax is selected3 when generating z). From these results

it can be inferred that:

1. F̄MMSEc and F̄MAPg increase quickly with dmax (e.g., F̄MMSEc ' 107 → 108), since the region

R(Z) becomes larger.

2. F̄DRD-Pg , F̄PRD-Pg and F̄PRD-Pp increase much more slowly than F̄MMSEc and F̄MAPg with dmax

(e.g.,
∂F̄MMSEc

∂dmax
' 7.3 · 102 ∂F̄PRD-Pp

∂dmax
).

These results show that the computational saving provided by DRD and PRD estimators over

MMSE and MAP estimators becomes very relevant when dmax is large (i.e., when long-range

anchors are employed). On the contrary, when dmax is small (e.g., in a scenario of “connectivity-

based” localization), R(Z) is small and MMSE and MAP estimation algorithms can be directly

employed (regardless of the size of R).

4.2 Optimal γ Parameter for DRD-MMSE and DRD-MAP

In any localization system, a trade-off between complexity and accuracy has to be achieved. This

is clearly evidenced by Fig. 3, where the γ parameter of DRD estimators is modified, so changing

the portion of R(Z) to be selected (see Paragraph [1, Paragraph 3.3]); this strongly influences the

accuracy and complexity of DRD estimators. In particular, Fig. 3 shows that, as γ increases,

DRD-Ec and DRD-Pg become more accurate, but also require a larger computational effort. More-

over, the RMSE characterizing such algorithms exhibits a threshold behaviour. In this case a good

accuracy-complexity trade-off is obtained selecting γ ' 0.6, since this corresponds to the knee of

the RMSE curve.
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