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1 Introduction

In this Technical Report the proofs of the Bayesian Cramer Rao bound (BCRB), extended Ziv
Zikai bound (EZZB) and Weiss Weinstein bound (WWB) are provided for localization systems
endowed with map knowledge. For a description of the notation used in the derivations and for a
discussion of the bounds, please refer to [1, Sec. II] and [1, Sec. III], respectively.

2 Derivation of the BFIM for Generic-Shape Uniform Maps

We start the derivation for the BFIM associated to uniform maps introducing some properties for
the smoothing function mentioned in [1, Sec. II] which is used to model the map pdf. Then the
1-D BFIM is obtained and later extended to 2-D case, thus proving [1, Eq. (8)].

2.1 Modelling of the Pdf

Let s(t) be a continuous and differentiable function s : R→ R. Assume that s(t) has the following

additional properties: 1) s(t) ≥ 0 ∀t ∈ R; 2)
´
s(t)dt = 1; 3)

´ ∂s(t)
∂t
dt = 0; 4) s(t) has support[

−1
2
; +1

2

]
; 5) s(0) = 1.

The function s(·) is then a pdf function (assumptions 1 and 2) and has an associated a-priori
FI Js (assumption 3 is the regularity condition that grants the FI existence) [2]. The assumptions
4 and 5 finally assure that s(·) can be used to model bounded statistical distributions i.e. maps
as we defined in [1, Sec. II], eventually with some scaling and translation.

A function s(·) satisfying the conditions above is dubbed in [1] as “smoothing function”. Ex-
amples of functions that satisfy those hypotheses are:

1. s(t) = g
(
t+ 1

2
; δ
)
g
(
−t+ 1

2
; δ
)

where g(t; δ) , f(t+δ)
f(t+δ)+f(−t+δ) and f(t) , e−

1
t u(t);

2. s(t) = g
(
t+ 1

2
; δ
)
g
(
−t+ 1

2
; δ
)

where

g(t; δ) ,


0 t < −δ

− t3

4δ3
+ 3t

4δ
+ 1

2
−δ ≤ t ≤ +δ

1 t > +δ

Note that in the examples above δ ∈
(
0; 1

2

]
is a parameter which defines the steepness of the pdf

s(t), so that limδ→0 g (t; δ) = u(t), where u(t) is the unit step function (which however does not
have an associated FI). In the latter example, the associated FI is easy to compute in closed form:
Js(δ) = 9 ln 3

4δ
.
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Finally note that s̃(t, a, b) , 1
b
s
(
t−a
b

)
is still a pdf function and its associated FI is:

J̃s , Et

{(
∂ ln

∂t

1

b
s

(
t− a
b

))2
}

= Et

{(
∂ ln s (u)

∂u

1

b

)2
}

=
Js
b2

2.2 Derivation of the BFIM for 1-D Maps

Considering a unidimensional (1-D) scenario, where the agent position to estimate is the scalar x.
The support R ⊂ R of a 1-D uniform map can be always represented as the union of Nr disjoint
segments spaced by Nr−1 segments where the map pdf f(x) is equal to 0. Let the Nr segments of
the support R be indexed by the odd numbers of the set N o = {1, 3, ..., 2Nr − 1} and let cn (wn)
denote the centre (width) of the n-th segment, with n ∈ N o. Then the map pdf f(x) associated
with this scenario can be expressed as

f(x) =
1

WR

∑
n∈N o

s

(
x− cn
wn

)
=

1

WR

∑
n∈N o

wns̃(x, cn, wn) (1)

where WR ,
∑

n∈N o wn and s̃(·) is the smoothing function as defined in Sec. 2.1.

The a-priori FI associated with f(x) is Jx , Ex
{(

∂ ln f(x)
∂x

)2}
[2]. To simplify the expression

we consider that a) for each value of x there is only one rectangle at most for which
(
∂ ln f(x)
∂x

)2
6= 0,

and b) varying x over R, all rectangles contribute to the FI integral. Thus the FI can be written
as the sum of the FI contribute of each rectangle:

Jx ,
1

WR

∑
n∈N o

wnEx

{(
∂

∂x
ln s̃(x, cn, wn)

)2
}

=
1

WR

∑
n∈N o

wnJ̃s(wn) =
1

WR

∑
n∈N o

1

wn
(2)

2.3 Derivation of the BFIM for 2-D Maps

Consider a 2-D smoothed uniform map f(p) with support R ⊂ R2; exploiting some definitions
given in [1, Sec. II] and assuming that the smoothing along x and y are independent, the pdf for
an arbitrary smoothed uniform 2-D map can be put in the form:

f(p) =
1

AR

∑
n∈N oh (y)

s

(
x− cx,n(y)

wn(y)

)
·
∑

m∈N ov (x)

s

(
y − cy,m(x)

hm(x)

)
(3)
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where cx,n(y) (cy,m(x)) and wn(y) (hm(x)) denote the centre and the length, respectively of the
n-th (m-th) segment and where s(·) is a smoothing function as defined in Sec. 2.1. Also note that

the regularity condition Ep

{
∂ ln f(p)
∂p

}
= 0 is easily verified thanks to the linear operators involved

and s(·), which is assumed to respect that condition.
The a priori BFIM, using the iterated expectation and focusing on the FI for the coordinate

x, can be written as [2]:

[Jp]1,1 , Ep

{(
∂ ln f(p)

∂x

)2
}

= Ey

{
Ex|y

{(
∂ ln f(p)

∂x

)2
}}

(4)

Then, if we ignore the smoothing for the y coordinate, that is we introduce the approximation

f(p) ≈ 1

AR

∑
n∈N oh (y)

s

(
x− cx,n(y)

wn(y)

)
=
WR(y)

AR
1

WR(y)

∑
n∈N oh (y)

s

(
x− cx,n(y)

wn(y)

)

where WR(y) ,
∑

n∈N oh (y)
wn(y), we reduce the evaluation of the inner expectation to the evalu-

ation of the FI of a 1-D map composed by Nr = Nh(y) segments having widths {wn(y)} and centred
around the points {cx,n(y)}. Thus, using the result obtained in Sec. 2.2, it is easily inferred that

Ex|y

{(
∂ ln f(p)

∂x

)2
}
' WR(y)

AR
Js

WR(y)

∑
n∈N oh (y)

1

wn(y)
(5)

Substituting the last result in the RHS of (4) produces

[Jp]1,1 '
Js
AR

ˆ
Y

∑
n∈N oh (y)

1

wn(y)
f(y)dy ' Js

AR

ˆ
Y

∑
n∈N oh (y)

dy

wn(y)
(6)

where f(y) ,
´
f(p)dx is the pdf of y only and it has been ignored in the integral since the

smoothing is assumed to affect a small portion of the integration domain.
Symmetrically, ignoring the smoothing for the x coordinate, an approximated expression for the

FI relative to the coordinate y is obtained. Note however that the two approximations previously
mentioned, considered together, are exact only for rectangular maps. Also note that the cross-
terms [Jp]2,1 and [Jp]1,2 of the BFIM are non-zero if and only if the parameters x and y are
independent (like in a 2-D rectangle); in general, because of the smoothing this is not exactly true,
but such dependence is typically weak, so that a good approximation for the BFIM is given by:

Jp '
Js
AR

diag


ˆ
Y

∑
n∈N oh (y)

dy

wn(y)
,

ˆ
X

∑
m∈N ov (x)

dx

hm(x)

 (7)
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which coincides with [1, Eq. (8)].
Note that the BCRB for a generic estimator p̂(z) of p based on the observation vector z is

given by

Λ (p̂(z)) , Ep̂(z),p

{
(p̂(z)− p) (p̂(z)− p)T

}
� J−1

and is obtained from (7) assuming a specific observation model which connects z with p and
employing the relation:

J = Jz|p + Jp

where Jz|p , Ez,p

{
− ∂
∂p

[
∂
∂p

ln f(z|p)
]T}

and Jp is given, in this contest, by (7).

3 Derivation of the EZZB for Generic-Shape Uniform Maps

In this Section we prove the EZZB expression presented in [1, Eq. (12-13)] using the derivation of
[3, Sec. II.B] as guideline. Then the EZZB derived is evaluated for 1-D maps and extended to the
2-D case, resulting in [1, Eq. (14)].

3.1 Derivation of the EZZB

Consider a random vector p ∈ R ⊂ R2; the Bayesian mean square error matrix (BMSE) associated
with a generic estimator p̂(z) of p based on the observation vector z is given by

Λ (p̂(z)) , Ep̂(z),p

{
(p̂(z)− p) (p̂(z)− p)T

}
If the identity [4, p. 24] is considered, then:

Eν , [Λ (p̂(z))]ν =
1

2

ˆ ∞
0

Pr

{
|ξν | ≥

h

2

}
h dh (8)

where Eν is the estimation error for the coordinate ν, ξν = [p̂(z)− p]ν , p̂(z) is some generic
estimator of the r.v. p based on the observation vector z and ν ∈ {x, y}. Then, trivially
Pr
{
|ξν | ≥ h

2

}
= Pr

{
ξν >

h
2

}
+ Pr

{
ξν ≤ −h

2

}
; if we consider two events with non-zero probab-

ility p = ρ0 and p = ρ1, we can express the inner term of (8) as:

Pr

{
|ξν | ≥

h

2

}
=

ˆ
R2

Pr

{
ξν >

h

2
|p = ρ0

}
f(ρ0)dρ0 +

ˆ
R2

Pr

{
ξν ≤ −

h

2
|p = ρ1

}
f(ρ1)dρ1 (9)

where f(·) is the a-priori pdf for the parameter to estimate p. If we let ρ0 = ρ and ρ1 = ρ+ δ(h),
where δ(h) is some function of the integration variable of (8) and we constrain the integrals of (9)
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on a subset R(h) of the map support R, such that f(ρ) > 0 and f(ρ + δ(h)) > 0 (and thus the
conditional probabilities of (9) are meaningful), then we can divide and multiply by the quantity
f(ρ0) + f(ρ1) = f(ρ) + f(ρ + δ(h)) > 0 and obtain the same result reported in [3, Eq. (22-30)]:

Pr

{
|ξν | ≥

h

2

}
≥
ˆ
R(h)

[f(ρ) + f(ρ + δ(h))]P z
min(ρ,ρ + δ(h))dρ (10)

which holds for any δ(h) satisfying the equality aTδ(h) = h, where a ∈ R2. Note that (10)
generalizes [3, Eq. (30)] to the case where the pdf f(·) of the parameter to estimate has a bounded
support. Here a = eν is selected so that δ(h) = heν ; this choice allows us to obtain a bound on the
estimation error variances. Then substituting (10) in (8) produces [1, Eq. (13)], which is reported
here for reader convenience:

Eν ≥ Zν ,
1

2

¨
Pν

[f (ρ) + f (ρ + heν)]P
z
min (ρ,ρ + heν)h dρdh (11)

where ν ∈ {x, y}; note that the integration domains of h and ρ have been merged in the set Pν :

Pν , {(h,ρ) : h ≥ 0 ∧ f (ρ) > 0 ∧ f (ρ + heν) > 0} ⊂ R3

and that the complete bound is written as

Λ (p̂(z)) � Z , diag {Zx, Zy}

or equivalently
E , diag {Ex, Ey} � Z (12)

3.2 Derivation of the EZZB for 1-D Maps

Let us evaluate now (11) for a 1-D uniform map whose support R ⊂ R consists of the union of Nr

disjoint segments and where the agent position to estimate is the scalar x. In the following such
segments are indexed by the odd numbers of the set N o = {1, 3, ..., 2Nr−1} and the lower (upper)
limit of the segment n ∈ N o is denoted ln , cn− wn

2
(un , cn + wn

2
), where cn (wn) represents the

centre (length) of the segment itself. Moreover, it is assumed, without any loss of generality, that
c1 < c3 < ... < c2Nr−1.

Note that in this context, the smoothing function which is required for the BFIM analysis (see
Appendix2.1) is not used, and the truly uniform map model is adopted. Eq. (11) can be adapted
to 1-D scenario:

Z ,
1

2

¨
P

[f(τ) + f(τ + h)]P z
min(τ, τ + h)h dτdh (13)
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where ρ = τ , P = {(τ, h) : h ≥ 0 ∧ f(τ) > 0 ∧ f(τ + h) > 0} and P z
min(τ, τ + h) represents the

minimum error probability of a binary detector which, on the basis of a noisy datum z and a
likelihood ratio test, has to select one of the following two hypotheses H0 : x = τ and H1 : x = τ+h.

We note that: a) because of our uniform map assumption, for any (τ, h) ∈ P , f(τ) + f(τ +
h) = 2

WR
(with WR ,

∑
n∈N o wn), because of the uniformity of the considered map; b) the

prior-probabilities of the hypotheses H0 and H1 are the same and the maximum-likelihood rule
is thus the optimal detection rule: Ĥopt(z) = arg maxH∈{H0,H1} f(z|H). Assuming a Gaussian
observation model z = x + n, where n ∼ N (0, σ2), we obtain f(z|H = H0) = N (z; τ, σ2) and
f(z|H = H1) = N (z; τ + h, σ2). The optimal detection rule thus becomes

Ĥopt(z) =

{
H0 z ≤ t+ h

2

H1 z > t+ h
2

and its probability of error is P z
min(τ, τ +h) = 1

2
erfc

(
h

2σ
√
2

)
, so that P z

min(τ, τ +h) is not a function

of τ and (13) further simplifies to:

Z =
1

2WR

¨
P
h erfc

(
h

2σ
√

2

)
dτ dh

=
σ3

2WR

¨
Q
u erfc

(
u

2
√

2

)
dt du (14)

where u , h/σ, t , τ/σ and Q , {(t, u) : u ≥ 0 ∧ f(σt) > 0 ∧ f(σ(t+ u)) > 0} can be shown
to be a 2-D domain consisting of the union of Nr triangles and Nr(Nr − 1)/2 parallelograms in
the plane (t, u), as exemplified by Fig. 1, which refers to the case Nr = 3. In particular, the
contribution to (14) from the i-th triangle Qi ,

{
(t, u) : li

σ
≤ t ≤ ui

σ
∧ 0 ≤ u ≤ ui

σ
− t
}

is

σ3

2WR

¨
Qi
u erfc

(
u

2
√

2

)
dt du =

σ3

2WR

ˆ ui
σ
−t

0

ˆ ui
σ

li
σ

u erfc

(
u

2
√

2

)
dt du

=
σ3

2WR

ˆ ρi

0

ˆ ui
σ
−u

li
σ

u erfc

(
u

2
√

2

)
dt du

=
σ3

2WR

ˆ ρi

0

(ρi − u)u erfc

(
u

2
√

2

)
dt du

which can be written in a compact form as σ2

2ρW
ζ(ρi), where ρi , wi/σ, ρW ,WR/σ, the function

ζ(ρ) is defined as

ζ(ρ) ,
ˆ ρ

0

(ρ− u)u erfc

(
u

2
√

2

)
du (15)
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and i ∈ N o.
As far as the parallelograms are concerned, the i-th map support segment, for some val-

ues of h, will overlap with all previous segments1, generating the parallelograms shown in Fig.
1; let the overlap of the i-th segment with the (i − 1)-th segment define the subset Qov,i ,{

(t, u) : li
σ
≤ t ≤ ui

σ
∧ li

σ
− t ≤ u ≤ ui

σ
− t
}

, with i ∈ N e , {2, 4, ..., 2(Nr − 1)}; then the integral of

(14) over Qov,i contributes the term σ2

2ρW
ζov(ρ4i , ρi−1, ρi), where ρ4i , 4xi/σw, 4xi , li − ui−1

and ζov(ρ4, ρ1, ρ2) is defined as

ζov (ρ4, ρ1, ρ2) ,
ˆ ρ4+ρ2

ρ4

(u− ρ4)u erfc

(
u

2
√

2

)
du+

ˆ ρ4+ρ1

ρ4+ρ2

ρ2u erfc

(
u

2
√

2

)
du+

ˆ ρ4+ρ1+ρ2

ρ4+ρ1

(ρ4 + ρ1 + ρ2 − u)u erfc

(
u

2
√

2

)
du (16)

for ρ1 > ρ2 (it can be shown that ζov(ρ4, ρ1, ρ2) = ζov(ρ4, ρ2, ρ1)).
We then note that the contributes to (14) of the overlaps of the i-th segment with the (i−2)-th,

(i−3)-th, ..., 1st segment are always positive since the integrand u erfc
(

u
2
√
2

)
≥ 0, given that u ≥ 0.

Thus neglecting such regions of the plane (u, t), i.e. restricting Q to
(⋃Nr

n=1Qn
)⋃(⋃Nr−1

n=1 Qov,n
)

,

a lower bound on the EZZB Z is obtained. This choice allows us to derive a bound with a tractable
analytical expression: summing together the Nr contributes of (15) and the Nr − 1 contributes of
(16), the lower bound becomes:

E , λ (x̂(z)) ≥ Z ≥ σ2

2ρW

[∑
n∈N o

ζ (ρn) +
∑
n∈N e

ζov (ρ4n , ρn−1, ρn+1)

]
(17)

where λ (x̂(z)) , Ex̂(z),x
{

(x̂(z)− x) (x̂(z)− x)T
}

is the BMSE for the 1-D estimator x̂(z).

1It is more formally accurate to write that, decomposing f(τ) as f1(τ) + f2(τ), where f1(τ) is the pdf associated
with the first segment parametrized by (c1, w1) and f2(τ) is the pdf similarly associated with the second segment
(c2, w2), then the support of f2(τ + h) will overlap with the support of f1(τ) for some values of h. In the following
however, for the sake of brevity, we will refer to the “overlap of the pdf supports” just as the “overlap of the
segments”.
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3.3 Derivation of the EZZB for 2-D Maps

Consider a 2-D uniform map f(p) = f(x, y) with support R ⊂ R2; writing (11) for ν = x, the
EZZB is written as

Ex ≥ Zx =
1

2

˚
Px

[f(τ, υ) + f(τ + h, υ)]P z
min(ρ,ρ + hex)h dτ dυ dh (18)

where Px , {(h, τ, υ) : h ≥ 0 ∧ f (τ, υ) > 0 ∧ f (τ + h, υ) > 0} ⊂ R3 and ρ , [τ, υ]T . Note that Px
is the straightforward extension of the integration domain P appearing in Sec. 3.2. The minimum
error probability P z

min(ρ,ρ+ hex), adopting the Gaussian observation model f(z|p) = N (z; p,Σ),
with Σ = diag

{
σ2
x, σ

2
y

}
, is computed using the optimal detection rule Ĥopt,x(z), whose expression

is similar to the one obtained for 1-D maps:

Ĥopt,x(z) =

{
H0 zx ≤ x+ h

2

H1 zx > x+ h
2

where z , [zx, zy]
T . Its probability of error is thus, unsurprisingly, the same as in the 1-D case:

P z
min(ρ,ρ + hex) = 1

2
erfc

(
h

2σx
√
2

)
= P z

min(τ, τ + h). Furthermore, with few regularity assumptions

on the map support, the integral over Px can be decomposed as the integral over (h, x) and y:

Zx =

ˆ
Y

{
1

2

¨
Px(υ)

[f(τ, υ) + f(τ + h, υ)]P z
min(τ, τ + h)h dτ dh

}
dυ (19)

where Px(υ) = {(h, τ) : h ≥ 0 ∧ f(τ, υ) > 0 ∧ f(τ + h, υ) > 0} is the slice of Px ⊂ R3 at coordinate
υ and the expression inside the curly brackets is recognized to be the EZZB for a 1-D map (see
(13)), function of the integration variable υ, whose number of segments Nr(υ) = Nh(υ) and the
lengths of the 1-D segments are given by {wn(υ)}; the distance between the (n + 1)-th and the
n-th segment at ordinate υ is then 4wn(υ). Thus, plugging (17) into (19) it is easy to obtain:

Zx =

ˆ
Y

 σ3
x

2AR

 ∑
n∈N oh (υ)

ζ

(
wn(υ)

σx

)
+

∑
n∈N eh(υ)

ζov

(
4wn(υ)

σx
,
wn−1(υ)

σx
,
wn+1(υ)

σx

) dυ

Repeating the proof for the dual coordinate ν = y, the EZZB expression

E � Z = diag

{
σ3
x

2AR

ˆ
Y

 ∑
n∈N oh (y)

ζ

(
wn(y)

σx

)
+

∑
n∈N eh(y)

ζov

(
4wn(y)

σx
,
wn−1(y)

σx
,
wn+1(y)

σx

) dy,
9



σ3
y

2AR

ˆ
X

 ∑
m∈N ov (x)

ζ

(
hm(x)

σy

)
+

∑
m∈N ev (x)

ζov

(
4hm(x)

σy
,
hm−1(x)

σy
,
hm+1(x)

σy

) dx
 (20)

is found, where E , diag {Ex, Ey}. Note that (20) coincides with [1, Eq. (14)].

4 Derivation of the WWB for Generic-Shape Uniform Maps

In this Section we prove the WWB expression presented in [1, Eq. (20)] using the derivation of
[5] as guideline. Then the WWB is derived for N -D maps and finally specialized for 2-D case,
resulting in [1, Eq. (22-26)].

4.1 Derivation of the WWB

Consider a random vector p ∈ R ⊂ RN ; the Bayesian mean square error matrix (BMSE) Λ (p̂(z))
associated with a generic estimator p̂(z) of p based on the observation vector z is given by

Λ (p̂(z)) , Ep̂(z),p

{
(p̂(z)− p) (p̂(z)− p)T

}
The WWB on such estimation error covariance is given by [5, Eq. (7)]:

Λ (p̂(z)) � HG−1HT (21)

where H = [h1, ...,hN ] is a matrix of test vectors hi ∈ RN and the matrix G is given by [5, Eq.
(8)]

[G]i,j =
Ez,p {r (z,p; hi, si) r (z,p; hj, sj)}

Ez,p {Lsi (z; p + hi,p)}Ez,p {Lsj (z; p + hj,p)}
(22)

where
r (z,p; hi, si) , Lsi (z; p + hi,p)− L1−si (z; p− hi,p) (23)

and si, with i = 1, ..., N is a scalar optimization parameter. The inequality (21) holds for any
couple {hi, si}with i = 1, ..., N , such that G is well defined and invertible.

The tightest bound is obtained optimizing against the {hi, si} parameters:

Λ (p̂(z)) � sup
{hi,si}

HG−1HT (24)

In order to simplify the WWB analytical evaluation, we set si = 1
2
, ∀i (as suggested by Weiss

and Weinstein this choice typically provides a tight bound) and H = diag {h1, ..., hN} to obtain a
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bound only on the error variances (and not covariances). It is easy to show that with these choices,
the elements off-diagonal of HG−1HT are zero while the i-th term of the diagonal is (see (22)):

[
HG−1HT

]
i,i

= h2i

(
Ez,p

{
L

1
2 (z; p + hi,p)

})2
Ez,p {r2 (z,p; hi, si)}

(25)

The WWB (24) thus may be re-written as

Λ (p̂(z)) �W (26)

where W = diag {W1, ...,WN} and the generic diagonal term Wν is (see (23) and (25)):

Wν , sup
hν∈R

(
hνEz,p

{
L

1
2 (z; p + hνeν ,p)

})2
Ez,p

{[
L

1
2 (z; p + hνeν ,p)− L 1

2 (z; p− hνeν ,p)
]2} (27)

which coincides with [1, Eq. (20)]. If E , diag {E1, ..., EN} is defined, with Eν = [Λ (p̂(z))]ν , then
(26) is obviously equivalent to

E �W

4.2 Derivation of the WWB for N-D Maps

Consider a N -D uniform map f(p) with support R ⊂ RN ; the WWB term associated to the
coordinate ν is (27), where ν ∈ {x, y, z, ...}. Adopting the Gaussian observation model

f(z|p) = N (z; p,Σ) (28)

with Σ = diag {σ2
1, ..., σ

2
N}, the likelihood ratios appearing in (27) become L (z; p1,p2) = N (z;p1,Σ)

N (z;p2,Σ)

∀p1,p2 ∈ R. Thus the numerator of (27) may be written as

Ez,p

{
L

1
2 (z; p + hνeν ,p)

}
=

1

AR

ˆ
RN

ˆ
Pν(hν)

N
1
2 (z;ρ + hνeν ,Σ)N

1
2 (z;ρ,Σ) dρ dz

=
1

AR
exp

(
− h2ν

8σ2
ν

)ˆ
Pν(hν)

dρ

=
1

AR
exp

(
− h2ν

8σ2
ν

)
λν (hν ,R) (29)

11



where Pν (hν) , {ρ : f (ρ) > 0 ∧ f (ρ + hνeν) > 0} is a slice of the integration domain Pν ⊂ RN+1

(which is the same domain involved in the evaluation of the EZZB when N = 2), at coordinate h
in the (h;ρ) space and the function λν (hν ,R) is defined as

λν (hν ,R) ,
ˆ

IR(p)IR(p + hνeν)dp =

ˆ
Pν(hν)

dρ (30)

The expectation appearing in the denominator of (27) can be expressed as

Ez,p

{[
L

1
2 (z; p + hνeν ,p)− L

1
2 (z; p− hνeν ,p)

]2}
=

Ez,p {L (z; p + hνeν ,p)}+ Ez,p {L (z; p− hνeν ,p)}−

2Ez,p

{
L

1
2 (z; p + hνeν ,p)L

1
2 (z; p− hνeν ,p)

}
i.e., as the sum of three terms which are denoted A, B and C, respectively, in the following. It is
important to note that

A = Ez,p {L (z; p + hνeν ,p)}

=
1

AR

ˆ
R2

ˆ
Pν(hν)

N (z;ρ + hνeν ,Σ)dρ dz

=
1

AR

ˆ
Pν(hν)

dρ =
1

AR
λν (hν ,R)

= Ez,p {L (z; p− hνeν ,p)} = B (31)

and

C =
1

AR

ˆ
R2

ˆ
P̃ν(hν)

N (z;ρ + hνeν ,Σ)dρ dz

=
1

AR
exp

(
− h2ν

2σ2
ν

) ˆ
P̃ν(hν)

dρ

=
1

AR
exp

(
− h2ν

2σ2
ν

)
γν (hν ,R) (32)

where P̃ν(hν) , {ρ : f(ρ) > 0 ∧ f(ρ + heν) > 0 ∧ f(ρ− heν) > 0}, and the function γν (hν ,R) is
defined as

γν (hν ,R) ,
ˆ

IR(p)IR(p + hνeν)IR(p− hνeν)dp =

ˆ
P̃ν(hν)

dρ (33)

12



Finally, substituting (29), (31) and (32) in (27), we obtain that the WWB for the Gaussian
observation model (28) and the N -D map considered, has the equivalent form

Wν = sup
hν∈R

[
1
AR

exp
(
− h2ν

8σ2
ν

)
λν (hν ,R)

]2
2
AR
λν (hν ,R) + 1

AR
exp

(
− h2ν

2σ2
ν

)
γν (hν ,R)

(34)

Note that (34) coincides with [1, Eq. (22)].

4.3 Derivation of the WWB for 2-D Maps

The functions λν (hν ,R) and γν (hν ,R) appearing in (34) can be simplified when N = 2 and can
be related explicitly to the functions {wn(·)}, {4wn(·)}, {hm(·)}, {4hm(·)} introduced in [1, Sec.
II] to model a 2-D map f(p).

Let us focus on the x coordinate (ν = x); the integrals of λx (hx,R) and γx (hx,R) can be
decomposed in x and y as

λx (hx,R) =

¨
Pν(hν)

dx dy =

ˆ
y∈Y

ˆ
x∈Pν(hν ,y)

dx dy (35)

γx (hx,R) =

¨
P̃ν(hν)

dx dy =

ˆ
y∈Y

ˆ
x∈P̃ν(hν ,y)

dx dy (36)

where the sets
Px (hx, y) , {x : f (x, y) > 0 ∧ f (x+ hx, y) > 0} ⊂ R

and
P̃x (hx, y) , {x : f (x, y) > 0 ∧ f (x+ hx, y) ∧ f (x− hx, y) > 0} ⊂ R

represent slices of Px (hx) and P̃x (hx), respectively. These sliced sets are composed by 1-D segments
and effectively represent 1-D maps as those described in Sec. 2.2 and Sec. 3.2. More precisely,
Px (hx, y) is composed by Nr = Nh(y) segments having widths {wn(y)} and centred around the
points {cx,n(y)}, where n ∈ N o

h (y).
For these reasons Px (hx, y) has the same form of a slice of the Q set (depicted in Fig. 1 for a

specific example 1-D map) and used in deriving the EZZB (see Sec. 3.2), obtained setting t = x,
u = hx. We note that:

1. each n-th segment of Px (hx, y), with n ∈ N o
h (y), has width wn(y) and describes a triangle

on the (hx, x) plane (similar to Qn), which contributes to the inner integral of (35) a term

ω (wn(y), hx) and to the inner integral of (36) a term 2ω
(
wn(y)

2
, hx

)
, where the function

ω (w, hx) is defined as
ω (w, hx) , (w − hx) I[0;w] (hx) (37)

13



2. the n-th segment of Px (hx, y), with n ∈ N o
h (y), does overlap for some values of hx with

all previous segments, generating parallelograms on the (hx, x) plane (similar to Qov,n); for
simplicity we consider only the overlap of the n-th segment with the the (n− 1)-th segment,
as done in the EZZB derivation. Each of such overlap contributes to the inner integral of
(35) a term ωov (4wn(y), wn−1(y), wn+1(y), hx), where ωov (4w,w1, w2, h) is defined as

ωov (4w,w1, w2, h) ,


h−4w h ∈ [4w;4w + w2]

w2 h ∈ [4w + w2;4w + w1]

w1 + w2 +4w − h h ∈ [4w + w1;4w + w1 + w2]

(38)

in the case w1 ≥ w2; in the case w1 < w2, the function ωov (4w,w1, w2, h) has the same form
with w1 and w2 swapped.

For these reasons, for each value of the coordinate y, the inner integral of (35) can be written as∑
n∈N oh (y)

ω (wn(y), hx) +
∑

n∈N eh(y)

ωov (4wn(y), wn−1(y), wn+1(y), hx) (39)

whereas the inner integral of (36) can be written as

2
∑

n∈N oh (y)

ω

(
1

2
wn(y), hx

)
(40)

To obtain the expressions of λx (hx,R) and γx (hx,R), the outer integral on variable y has to be
included:

λx (hx,R) =

ˆ
Y

∑
n∈N oh (y)

ω (wn(y), hx) dy +

ˆ
Y

∑
n∈N eh(y)

ωov (4wn(y), wn−1(y), wn+1(y), hx) dy (41)

γx (hx,R) = 2

ˆ
Y

∑
n∈N oh (y)

ω

(
1

2
wn(y), hx

)
dy (42)

Note that (41) and (42) coincide with [1, Eq. (23)] and [1, Eq. (24)], respectively.
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