CROSS PLATFORM

Efficient Cross-Platform

Development:
Real-Time Video

Processing

Applications capable of running on many different types of

hardware and software environments are usually called

“cross-platform”.

n the context of this article “cross-platform code”

means source code written with a programming lan-

guage and tools (e.g. libraries) capable of running on
different Operating Systems (OS) and hardware plat-
forms; cross-platform code thus can be
compiled&executed or interpreted, without any change,
on e.g.a Windows PC or a Linux workstation.

Cross-platform code widens the number of potential
users of the software while maintaining a single code
base, thus providing strong advantages over single-plat-
form apps. Cross-platform code is typically associated
with Java, given its popularity and the number of plat-
forms for which a Java Virtual Machine is available. There
is, however, a number of areas where Java is not the best
solution and compiled languages are required because
of their better runtime performances both in terms of
memory footprint and execution speed. C++ is often
under-evaluated for cross-platform applications but
thanks to the many cross-platforms C/C++-based librar-
ies available nowadays, programming for multiple plat-
forms in C++ is actually easy!

Moreover, C++ can easily be used both for applica-
tions loosely connected to their surrounding environ-
ment (think to e.g. word processors which mostly need
to process just keyboard and mouse inputs and read/
write to some file system) and for those applications re-
quiring instead a much tighter integration with the oper-
ating system and possibly with the hardware (think to
e.g. apps processing video streams, network-intensive
software or apps interacting with external data acquisi-
tion devices). Ensuring that such applications are capa-
ble of running in very different software environments
and capable of delivering the desired performances is
challenging and often requires good knowledge of the
underlying software layers.

Note that there are many cross-platform C/C++ li-
braries for Graphical User Interface (GUI) creation:
GTK, Qt, wxWidgets just to name a few!

34 | Software Developer’s

Many studies quantified the maximum latency
which can be tolerated for different tasks [1-3]; it var-
ies from 100ms for visual feedback to keyboard inputs
(e.g. when writing text) up to few seconds for less fre-
quent interactions.

In this article we consider as case of study a C++ cross-
platform application which uses the wxWidgets library
for its GUI, which processes a stream digitized by a cam-
era using the OpenCV library and which needs to run un-
der relatively-tight memory and speed constraints. This
example covers many practical situations involving e.g.
surveillance systems, embedded computer vision sys-
tems for autonomous robots, medical imaging systems
involving large datasets, etc. Writing such a software re-
quires many skills including: configuration of the depen-
dencies (libraries), knowledge of different libraries and
how they can be interfaced with each other (data con-
version), parallel programming (at least at basic level),
object-oriented and modular code programming. Even
building and linking together heterogeneous code is of-
ten non-trivial! In this article some suggestions and
guidelines for writing cross-platform C++ code will be
provided, with emphasis on the problems of a) integra-
tion of cross-platform and platform-specific code b) effi-
ciency in terms of both memory and speed.

Cross-Platform, Responsive GUIs
Programming a good GUI is not an easy task. Users
want the GUI to be a) intuitive (easy to use but still capa-
ble of providing access to all the application’s features)
and b) responsive. Responsiveness typically depends on
the amount of processing which is triggered by user ac-
tions and on the number of layers through which the
processed information needs to propagate before it is
actually rendered on the screen. Of course for cross-plat-
form applications the number of layers is higher than for
native applications, but it is user-triggered processing

05/2012

Efficient Cross-Platform Development

that typically dominates the GUI latency. Multi-thread-
ing is very useful in this sense since it allows the GUI to
be responsive to user actions even while performing
CPU-intensive applications and thus is often absolute-
ly necessary for data-intensive applications.

Like most modern toolkits, wxWidgets provides
to the user all the tools required for multi-threaded
GUI creation and user-event processing in a thread-
safe manner (even if more advanced users may pre-
fer to use the tools provided by specific libraries like
e.g. Boost.Thread or even the now-standardized C++11
threading facilities). The basic concept is that wxWid-
gets internally handles an “event loop” (a.k.a. “mes-
sage pump”) in the “main thread” (the thread which
runs the “main()” of the application and which is start-
ed by the OS). All the event handling code is called by
such event loop. Listing 1 contains a simple, basic wx-
Widgets application which just handles clicks on the
menu item “Compute”; this control triggers a long
computation which is executed in the main thread,
thus freezing the GUI! Listing 2 shows the same appli-
cation written in the correct way: when the user clicks
on the “Compute” menu item, a secondary thread is
created and a wxEVT COMMAND _MYTHREAD _UPDATE
event informs the main thread that the computation
is going on so that updated results can be shown to
the user. (Note that the secondary thread in this case
is implemented inside the same class object MyFrame
using the wxThreadHelper model [6] which allows
the developer to avoid the use of lots of pointers to

connect the secondary thread with the main one.) The
most important concept here is that the long opera-
tion needs to be coded in sequential steps (i.e. not as
a single uninterruptible operation) because in second-
ary threads the wxThread:: TestDestroy() function
needs to be called regularly. In our example the long
computation is split in different steps using a “Compu-
tationState” object and the LongComputationsplit-
ted() function. Finally, note the need of synchroniza-
tion objects like wxMutex, which is the cross-platform
wxWidgets-equivalent of POSIX mutexes, and like the
helper class wxMutexLocker, very useful to avoid for-
getting a wxMutex::Unlock() call in some exit paths.
The big difference of the example in Listing 2, com-
pared to the one in Listing 1, is that while the compu-
tation is ongoing the GUI will be able to redraw, handle
user clicks, show a progress bar (with some additional
code), etc. For small applications, the wxThreadHelp-
er, wxThreadEvent, wxThread and wxMutex classes are
typically enough for building a responsive, cross-plat-
form multithreaded GUI.

Application Architecture

Building on the simple example of Listing 2, let us
now consider a cross-platform video processing appli-
cation. In particular, a video acquired from a camera at-
tached to the computer is processed and rendered in
real-time. Thanks to some cross-platform libraries many
of the involved tasks can be implemented writing only

Frame Object

Camera
Object

VideoWindow Object

APPLICATION

OS Native

wxWidgets Drawing Layers

CONFIG

GenlCam

OpenCV

PROCESSOR

CameraThread Obj THREAD

PROCESSOR
THREAD

CAMERA HW

Figure 1: Architecture of a cross-platform video-processing application

en.sdjournal.org

003 & 2aluTions, v prafesaton sl pioqr

Software Developer’s ‘ 35

CROSS PLATFORM

36 | Software Developer's 05/2012

Efficient Cross-Platform Development

portable code: e.g. GenlCam-compatible cameras usual-
ly provide a SDK for image acquisition on all major plat-
forms and the cross-platform OpenCV library implements
lots of computer vision algorithms making video process-
ing very enjoyable! The critical aspect in such application
thus reduces to the efficient interoperability among the
different libraries. Unnecessary memory allocations and
copies increase both the CPU load and the memory foot-
print and thus it is very important to minimize the num-
ber of auxiliary buffers used for pixel data temporary stor-
age. In Fig. 1 a block diagram depicts the interactions of
the application with the mentioned libraries, with its in-
ternal parts and with the buffers used for video storage ().

The main thread (green box) handles the GUI; for
simplicity, we consider just a frame window containing
a canvas, called videowindow, which renders on screen
the results of the video processing. The camera object
takes care of camera configuration and, most impor-
tantly, grabs the incoming frames from the hardware
through a secondary thread (the “camera thread”, de-
picted as the orange box). Note that the main thread
has no processing or data-intensive task so that a short
latency in response to user inputs is ensured. Moreover,
the only significant memory occupation for the main
thread is represented by the pixel buffer stored in the
VideoWindow instance; a common mistake when writ-
ing cross-platform code is to explicitly allocating such
buffer... this is not necessary as modern OS native lay-
ers already allocate internal memory for such purpose
(e.g. in the Windows GDI APl under the name of the
“window device context” [4]; in the Cairo APl under the
name of the “Cairo context” associated to a GDK win-
dow [5]); more details will be discussed later since, to
keep as low as possible the computational burden on
the main thread, it is important to operate on this buf-
fer using native graphic layers.

The camera thread task is to keep polling the cam-
era for new frames and notify the main thread (specifi-
cally, the videowindow in this example) each time a new
frame has been processed. The camera thread (orange
box in Fig 1) holds two buffers: the first one, the “grab-
ber buffer” is used to store the raw, acquired frame and
is thus filled with the data provided directly by the cam-
era. The second buffer, the “processing buffer”, is used
instead to store the result of the video processing. These
two buffers are both required since processing routines
typically require a) the source image to be completely
available in the RAM (since the operation to perform on
a pixel or on a group of pixel often depends on all near-
by pixels!) and b) a destination buffer different from the
source one (many operations are non-local, i.e. cannot
store their output in the source buffer). Note that both
the buffers can and should be allocated only once, for
obvious performance reasons, in the app initialization
and later just be re-used for each new incoming frame.

Regarding video processing, which is the most de-
manding task of such applications, it is important to ex-
ploit all available computing power, i.e. all the cores of
modern CPUs. For this reason, itis very useful, if possible,

en.sdjournal.org

to divide what usually is a sequential task in different
parallelizable tasks as represented in Fig 1 by the yellow
boxes. Note that two approaches can be devised:

1.the same frame is split in different areas (e.g. hori-
zontal or vertical “slices”) to be processed by differ-
ent threads;

2.different threads process different frames contigu-
ous in time.

Approach #1 grants the minimum processing laten-
cy and thus, when practical, is typically the best solu-
tion. Examples of common video processing include
face recognition, edge detection, pattern matching
and feature tracking; most of these algorithms can be
parallelized at least partially, thanks to OpenCV being
thread-aware (i.e. OpenCV functions can be called by
different threads and the reference counting for image
buffers, that is cv::mat objects in OpenCV dialect, is im-
plemented with atomic operations). Moreover, thanks
to the number of algorithms implemented in OpenCV
these tasks usually reduce to few function calls! Note
however that great care has to be put in the image for-
mats required by the different algorithms, in image en-
capsulation in the library-specific data structures and,
as always in parallel programming, in thread synchro-
nization and concurrent data access.

Video Acquisition and Processing

Skipping the details related to the specific hardware
and camera configuration, in Listing 3 we show the skele-
ton of the video acquisition code (the orange box of Fig. 1),
which in our example is implemented using some Genl-
Cam-compatible SDK. First, in CameraThread::Entry() the
processor threads are allocated; then the main loop of
the camera thread begins. Vendors typically provide cus-
tomized SDKs with their own class definitions but the ba-
sic video acquisition pattern remains the same: when a
new frame is available, it is copied on the PC memory (by
the GenlCam transport layer) and the user application:

1.asks the device the address of such buffer, which
is what we called “grabber buffer” so far; in List-
ing 3 we assume that for the specific cam-
era model adopted a GenICam DeviceClass
is available and exposes a function:
GenICam DeviceClass::AcquireNewFrame()

2.processes the buffer; note that the processing may
also take modify the source buffer... in the next frame
it will be overwritten, so that is not an issue; in Listing
3, the camera threads just offloads this processing to
a number NUM _ THREADS Of ProcessorThread Ob-
jects with the call processorThread::StartProcessi
ngNewFrame (). Then, after all of the processor threads
are started in parallel on different slices of the source
frame (thusfollowing theapproach #1 previously men-
tioned), cameraThread waits that all of them complete

Software Developer's | 37

CROSS PLATFORM

38 | Software Developer's 05/2012

Ewolutions fer protazaconal.

’
en.sdjournal.org Software Developer’s ‘ 39

CROSS PLATFORM

their task, calling

ProcessorThread::WaitForFrameProcessing(); I'ISimg 5: Video stream renderlng

3.gives the control of the buffer back to the de- class VideoWindow
vice object (in our example with the call ¢ public wxPanel
GenICam DeviceClass::ReleaseFrame()).

The ProcessorThread implementation is shown
in Listing 4. ProcessorThread iS @ wxThread-de-
rived class whose task is to process video frames us-
ing OpenCV; the function startProcessingNew-
Frame () is executed in the context of the camera thread
(see Listing 3) but triggers the execution of code in
ProcessorThread::Entry(), i.e. code in the “processor
thread” context. A few comments regarding the syn-
chronization code:

void DrawFrame (unsigned char* pProcBuffer,
const wxSize procBufferSize);

CameraThread *m pGrabberThread;
i

void VideoWindow: :DrawFrame (unsigned char*
pProcBuffer, const wxSize procBufferSize)

{

#if defined(WXMSW)
1.it is very important to ensure that the buf- - -
fer slices processed with OpenCV in wxSize viewPort = GetClientSize();
ImageProcessorThread::Entry() remain valid till HDC hDC = GetDC ((HWND) GetHandle ()) ;
the processing is complete... this is accomplished us- BITMAPINFO bmpInfo;
ingthem mutexBufferslices mutex;
2.the wxCondition ObjeCt m _cNewFrameToProcess IS /* ... bmpInfo initialization ... */
used to “sleep” the processorThread while it is wait-
ing for a new frame to process; StretchDIBits (hDC,
3.the wxCondition object m cFrameProcessing- /* destination rect */
Started is used to ensure that when the StartPro- 0, 0,
cessingNewFrame() function returns, the Entry() viewPort.x, viewPort.y,
function has locked the m mutexBufferSlices mu- /* source rect */
tex, so that subsequent calls to waitForFramePro- 0, 0,
cessing() will behave as expected; procBufferSize.x, procBufferSize.y,
Turning our attention to the inner code of pProcBuffer, bmpInfo, DIB _ RGB _ COLORS,
ProcessorThread::Entry(), We see that Pproces- SRCCOPY) ;
sorThread avoids any data copy and just wraps the in-
coming slice of the grabber buffer (and of the processing ~ #elseis defined . WHGTE)

buffer) into an OpenCV cv::Mat object. The conversion is

pretty easy using the cv::Mat constructor which accepts SRR i el e Pl = &

the buffer size, type and memory address. Note that the cairo _ surface _ E£F —uif =
cv::Mat destructors will not free the memory buffers | cf‘lro — image _ surface _ create _ for _
ata

they wrap, when constructed with the syntax of Listing
4; this allows to reuse the same buffers and, as already
mentioned, is very important for optimization reasons.
As example, the method cv::adaptiveThreshold() is
then called on the source img buffer slice resulting in
the update of the dest _ img buffer slice. Obviously, in
a real application ProcessorThreads will perform some
other operation on the source buffer and will extract
some kind of useful information (e.g. the number of per-
sons detected in the frame, trajectory of moving cars
or, as recent consoles do, the gestures of the user of the
software) and eventually post events to the main thread TN ¥ P oy P
to trigger further actions. B B

pProcBuffer, CAIRO FORMAT _ RGB24,
procBufferSize.x, procBufferSize.y,
width*bpp) ;

cairo_ t*cr=
gdk <cairo create
(GTKGetDrawingWindow ()) ;
cairo set source surface(cr, surf, 0, 0);

cairo paint(cr);
cairo _ destroy(cr);

#endif
Finally, when all processorThreads allocated and
run by the cameraThread object complete their oper- // tell the grabber thread, which is blocked in
ations, the processing buffer needs to be rendered on // that we finished painting the new frame!
thescreen;thhisaccon1pHshed by‘JideoWindow,MﬂﬂCh m _ pGrabberThread->RedrawHappened () ;

is notified by the CamerThread object through a wx- '}
EVT COMMAND NEW _FRAME event (see Listing 3).

40 | Software Developer's 05/2012

Efficient Cross-Platform Development

References

1. Card, S. K., Robertson, G. G., and Mackinlay, J. D. (1991). The information visualizer: An information work-
space. Proc. ACM CHI'91 Conf. (New Orleans, LA, 28 April-2 May), 181-188.
2. Miller, R.B. (1968). Response time in man-computer conversational transactions. Proc. AFIPS Fall Joint Com-

puter Conference Vol. 33, 267-277.

3. Myers, B. A. (1985). The importance of percent-done progress indicators for computer-human interfaces.
Proc. ACM CHI'85 Conf. (San Francisco, CA, 14-18 April), 11-17.

o 55

Presenting the Result to the User: Rendering

In Listing 5 we present a basic implementation of the
videoWindow class, whose code, differently from the
previously discussed code, is platform-specific and thus
may be tricky to write and requires knowledge of the
different graphic layer which are usually “hidden” by
wxWidgets abstraction layers. The task of videowindow
is to render the buffer processed by the camera thread
and render it on the screen canvas. Note that for this
reason the buffer held by videowindow is of the same
size of the canvas on screen, which in general will be
different from the size of the frame acquired and pro-
cessed (think to e.g. a canvas which is user-resizable,
which can be zoomed in/out, etc).

Let us start to analyze the first block of Listing 5, which
is compiled only under Windows (a.k.a. “wxMSW port” in
wxWidgets dialect). In the GDI API, i.e. the historical API
of Windows for 2-D drawing, the fastest function to trans-
fer the content of one buffer to another of different size
is stretchDIBits(). In this case the conversion wrapping
the processing buffer in a form suitable for use with the
native Windows APl is easy and just requires filling the var-
ious fields of the BTTMAPTINFO structure; in fact, in the GDI
language the processing buffer is a Device Indipendent
Bitmap (DIB) and thus can be copied on device-depen-
dent buffers (the so-called “device contexts”) without any
intermediate operation. In this case, the device context
where the processing buffer is copied, is the one associat-
ed directly with the videowindow HWND, i.e. with the video
memory reserved by the OS for the videowindow window.

Let us move on the second block, which is compiled
only under GTK+ (a.k.a. “wxGTK port”). GTK+ uses Cairo for
rendering and thus requires some basic knowledge about
the wxWidgets-GTK-GDK-Cairo interactions. In short, on
Linux the video hardware is managed by kernel modules
(a.k.a. drivers); X11 server (a.k.a. Xorg) connects to the hard-
ware in user space; Cairo interacts with X11 (through Xlib);
GDKand GTK use Cairo for rendering the controls and win-
dow contents; finally, wxWidgets wraps the GTK API. As
users of these libraries and software “ecosystems”, we are
mostly interested in Cairo functions given that the direct
use of X11 APl is very difficult and is not recommended
by the X11 developers! Moreover, Cairo API is better doc-
umented and is easier and safer to use. Looking at Listing
5 we note different names but the same drawing pattern

en.sdjournal.org

http://msdn.microsoft.com/en-us/library/dd144871(v=vs.85).aspx
http:/developer.gnome.org/gdk3/stable/gdk3-Cairo-Interaction.html
http://docs.wxwidgets.org/trunk/classwx_thread_helper.html

used in the Windows-only block: the processing buffer is
wrapped in a cairo_surface_t, which is then selected as
the “source surface” for the cairo drawing context associ-
ated with the videowindow. The copy is performed by the
cairo paint() call. Note that also here the destination
buffer is directly associated with the memory reserved by
the Cairo library for the videowindow canvas.

Conclusions

The analysis of the rendering stage concludes our
analysis of the key points of the app. In this article, we
discussed some guidelines and basic concepts for the
development of a cross-platform video-processing ap-
plication. The listings 3-5 cover some of the key points
of such an application and are meant as starting points
for more in-depth study of the mentioned libraries.

Indeed, thanks to great open-source libraries like wx-
Widgets, OpenCV, Boost, etc, cross-platform C++ pro-
gramming nowadays is easy and very powerful, and the
operations critical for performances can be highly op-
timized. Of course, as mentioned through the paper,
when using together heterogeneous code and data
structures from different libraries, great care has to be
taken in memory managementand in designing the en-
tire application in order to avoid at all costs unnecessary
memory operations and data processing. Indeed, there
is often a steep learning curve involved in this process...
s0, keep your favorite debugger close at hand and start
writing cross-platform, efficient code!

Francesco Montorsi

Francesco Montorsi is a PhD student in electrical
engineering in the University of Modena and Reggio
Emilia, Italy.

He has been working for many years in cross-plat-
form open source projects regarding user interfaces,
computer algebra, electrical circuit simulation and
video processing. He is a developer of wxWidgets
project.

He can be contacted at:
francesco.montorsi@gmail.com

Software Developer’s | 41

